104 research outputs found

    From A to B, statistical modelling of the ecology of ants and badgers

    Get PDF
    Biological systems involve features/behaviours of individuals and populations that are influenced by a multitude of factors. To explore the dynamics of such systems, a statistical description offers the possibility of testing hypotheses, drawing predictions and more generally, assessing our understanding. In the work presented, I analyse the properties of various biological systems of two very different organisms: Pharaoh‟s ants (Monomorium pharaonis) and badgers (Meles meles). The basis of the work, in the two projects on these biological systems, relies heavily on data collection and explaining observations using quantitative methods such as statistical analysis and simulations. In the first part of this thesis, I describe animal movement in space and time using data collected on the foraging behaviour of ants. A new model is presented which appears to reflect, with a high degree of accuracy, the behaviour of real organisms. This model constitutes the basis of the second chapter in which the qualities of searching strategies are explored in the context of optimal foraging. The final chapter of first part of this thesis concludes with a detailed analysis of the rate of exploration of individuals. As an essential part of foraging, the rate of individuals leaving their nest is analysed using collected data, and contrasted with results derived from a mathematical model. The second part of this thesis focuses on badgers. A first chapter explores the significance of palate maculation that is observed in badgers and relates their symmetry to parasitic infection. I then explore the population dynamics of a population of badgers subject to natural variation in climatic conditions. A first analysis is based on local climatic conditions, while a second analysis focuses on a more general property of climate (i.e. its unpredictability) to infer population dynamics

    The contribution of badgers to confirmed tuberculosis in cattle in high-incidence areas in England

    Get PDF
    The role of badgers in the transmission and maintenance of bovine tuberculosis (TB) in British cattle is widely debated as part of the wider discussions on whether badger culling and/or badger vaccination should play a role in the government’s strategy to eradicate cattle TB. The key source of information on the contribution from badgers within high-cattle-TB-incidence areas of England is the Randomised Badger Culling Trial (RBCT), with two analyses providing estimates of the average overall contribution of badgers to confirmed cattle TB in these areas. A dynamical model characterizing the association between the estimated prevalence of Mycobacterium bovis (the causative agent of bovine TB) among badgers culled in the initial RBCT proactive culls and the incidence among sympatric cattle herds prior to culling is used to estimate the average overall contribution of badgers to confirmed TB herd breakdowns among proactively culled areas. The resulting estimate based on all data (52%) has considerable uncertainty (bootstrap 95% confidence interval (CI): 9.1-100%). Separate analyses of experimental data indicated that the largest estimated reduction in confirmed cattle TB achieved inside the proactive culling areas was 54% (overdispersion-adjusted 95% CI: 38-66%), providing a lower bound for the average overall contribution of badgers to confirmed cattle TB. Thus, taking into account both results, the best estimate of the average overall contribution of badgers is roughly half, with 38% being a robustly estimated lower bound. However, the dynamical model also suggested that only 5.7% (bootstrap 95% CI: 0.9-25%) of the transmission to cattle herds is badger-to-cattle with the remainder of the average overall contribution from badgers being in the form of onward cattle-to-cattle transmission. These estimates, confirming that badgers do play a role in bovine TB transmission, inform debate even if they do not point to a single way forward

    Increased mortality attributed to Chagas disease: a systematic review and meta-analysis

    Get PDF
    Background: The clinical outcomes associated with Chagas disease remain poorly understood. In addition to the burden of morbidity, the burden of mortality due to Trypanosoma cruzi infection can be substantial, yet its quantification has eluded rigorous scrutiny. This is partly due to considerable heterogeneity between studies, which can influence the resulting estimates. There is a pressing need for accurate estimates of mortality due to Chagas disease that can be used to improve mathematical modelling, burden of disease evaluations, and cost-effectiveness studies. Methods: A systematic literature review was conducted to select observational studies comparing mortality in populations with and without a diagnosis of Chagas disease using the PubMed, MEDLINE, EMBASE, Web of Science and LILACS databases, without restrictions on language or date of publication. The primary outcome of interest was mortality (as all-cause mortality, sudden cardiac death, heart transplant or cardiovascular deaths). Data were analysed using a random-effects model to obtain the relative risk (RR) of mortality, the attributable risk percent (ARP), and the annual mortality rates (AMR). The statistic I-2 (proportion of variance in the meta-analysis due to study heterogeneity) was calculated. Sensitivity analyses and publication bias test were also conducted. Results: Twenty five studies were selected for quantitative analysis, providing data on 10,638 patients, 53,346 patient-years of follow-up, and 2739 events. Pooled estimates revealed that Chagas disease patients have significantly higher AMR compared with non-Chagas disease patients (0.18 versus 0.10; RR = 1.74, 95 % CI 1.49-2.03). Substantial heterogeneity was found among studies (I-2 = 67.3 %). The ARP above background mortality was 42.5 %. Through a sub-analysis patients were classified by clinical group (severe, moderate, asymptomatic). While RR did not differ significantly between clinical groups, important differences in AMR were found: AMR = 0.43 in Chagas vs. 0.29 in non-Chagas patients (RR = 1.40, 95 % CI 1.21-1.62) in the severe group; AMR = 0.16 (Chagas) vs. 0.08 (nonChagas) (RR = 2.10, 95 % CI 1.52-2.91) in the moderate group, and AMR = 0.02 vs. 0.01 (RR = 1.42, 95 % CI 1.14-1.77) in the asymptomatic group. Meta-regression showed no evidence of study-level covariates on the effect size. Publication bias was not statistically significant (Egger's test p=0.08). Conclusions: The results indicate a statistically significant excess of mortality due to Chagas disease that is shared among both symptomatic and asymptomatic populations

    Characterizing the dynamical accumulation of nuclear DNA in the sperm cells of Lycium barbarum L.

    Get PDF
    When sperm cells of the plant Lycium barbarum L. (L. barbarum) form in a style they begin to synthesize nuclear DNA (nDNA), which monotonically increases over time. To characterize the dynamics of nDNA accumulation, we present two new dynamical/statistical models. We applied these models to the accumulation of the nDNA content of sperm cells in L. barbarum between 16 to 32 hours after pollination in a style. A statistical analysis of experimental data, involving Markov chain Monte Carlo methods, allowed estimation of parameters of the models. We conclude that the model with no variation in the rate of nDNA accumulation adequately summarizes the data. This is the first work where the dynamics of nDNA accumulation has been quantitatively modeled and analyzed

    Comparison of machine learning methods for estimating case fatality ratios: an Ebola outbreak simulation study

    Get PDF
    Background Machine learning (ML) algorithms are now increasingly used in infectious disease epidemiology. Epidemiologists should understand how ML algorithms behave within the context of outbreak data where missingness of data is almost ubiquitous. Methods Using simulated data, we use a ML algorithmic framework to evaluate data imputation performance and the resulting case fatality ratio (CFR) estimates, focusing on the scale and type of data missingness (i.e., missing completely at random—MCAR, missing at random—MAR, or missing not at random—MNAR). Results Across ML methods, dataset sizes and proportions of training data used, the area under the receiver operating characteristic curve decreased by 7% (median, range: 1%–16%) when missingness was increased from 10% to 40%. Overall reduction in CFR bias for MAR across methods, proportion of missingness, outbreak size and proportion of training data was 0.5% (median, range: 0%–11%). Conclusion ML methods could reduce bias and increase the precision in CFR estimates at low levels of missingness. However, no method is robust to high percentages of missingness. Thus, a datacentric approach is recommended in outbreak settings—patient survival outcome data should be prioritised for collection and random-sample follow-ups should be implemented to ascertain missing outcomes

    Modelling the influence of naturally acquired immunity from subclinical infection on outbreak dynamics and persistence of rabies in domestic dogs

    Get PDF
    A number of mathematical models have been developed for canine rabies to explore dynamics and inform control strategies. A common assumption of these models is that naturally acquired immunity plays no role in rabies dynamics. However, empirical studies have detected rabies-specific antibodies in healthy, unvaccinated domestic dogs, potentially due to immunizing, non-lethal exposure. We developed a stochastic model for canine rabies, parameterised for Laikipia County, Kenya, to explore the implications of different scenarios for naturally acquired immunity to rabies in domestic dogs. Simulating these scenarios using a non-spatial model indicated that low levels of immunity can act to limit rabies incidence and prevent depletion of the domestic dog population, increasing the probability of disease persistence. However, incorporating spatial structure and human response to high rabies incidence allowed the virus to persist in the absence of immunity. While low levels of immunity therefore had limited influence under a more realistic approximation of rabies dynamics, high rates of exposure leading to immunizing non-lethal exposure were required to produce population-level seroprevalences comparable with those reported in empirical studies. False positives and/or spatial variation may contribute to high empirical seroprevalences. However, if high seroprevalences are related to high exposure rates, these findings support the need for high vaccination coverage to effectively control this disease

    Countering the Zika epidemic in Latin America

    Get PDF
    No description supplie

    Linear and machine learning modelling for spatiotemporal disease predictions: Force-of-Infection of Chagas disease

    Get PDF
    Q1Q1Background: Chagas disease is a long-lasting disease with a prolonged asymptomatic period. Cumulative indices of infection such as prevalence do not shed light on the current epidemiological situation, as they integrate infection over long periods. Instead, metrics such as the Force-of-Infection (FoI) provide information about the rate at which susceptible people become infected and permit sharper inference about temporal changes in infection rates. FoI is estimated by fitting (catalytic) models to available age-stratified serological (ground-truth) data. Predictive FoI modelling frameworks are then used to understand spatial and temporal trends indicative of heterogeneity in transmission and changes effected by control interventions. Ideally, these frameworks should be able to propagate uncertainty and handle spatiotemporal issues. Methodology/principal findings: We compare three methods in their ability to propagate uncertainty and provide reliable estimates of FoI for Chagas disease in Colombia as a case study: two Machine Learning (ML) methods (Boosted Regression Trees (BRT) and Random Forest (RF)), and a Linear Model (LM) framework that we had developed previously. Our analyses show consistent results between the three modelling methods under scrutiny. The predictors (explanatory variables) selected, as well as the location of the most uncertain FoI values, were coherent across frameworks. RF was faster than BRT and LM, and provided estimates with fewer extreme values when extrapolating to areas where no ground-truth data were available. However, BRT and RF were less efficient at propagating uncertainty. Conclusions/significance: The choice of FoI predictive models will depend on the objectives of the analysis. ML methods will help characterise the mean behaviour of the estimates, while LM will provide insight into the uncertainty surrounding such estimates. Our approach can be extended to the modelling of FoI patterns in other Chagas disease-endemic countries and to other infectious diseases for which serosurveys are regularly conducted for surveillance.https://orcid.org/0000-0002-8165-3198Revista Internacional - IndexadaA1N
    • …
    corecore